首页> 外文OA文献 >Detecting single-nucleotide polymorphism by single-nucleotide polymorphism interactions in rheumatoid arthritis using a two-step approach with machine learning and a Bayesian threshold least absolute shrinkage and selection operator (LASSO) model
【2h】

Detecting single-nucleotide polymorphism by single-nucleotide polymorphism interactions in rheumatoid arthritis using a two-step approach with machine learning and a Bayesian threshold least absolute shrinkage and selection operator (LASSO) model

机译:使用机器学习和贝叶斯阈值最小绝对收缩和选择算子(LASSO)模型的两步法,通过类风湿关节炎中的单核苷酸多态性相互作用检测单核苷酸多态性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this study was to detect interactions between relevant single-nucleotide polymorphisms (SNPs) associated with rheumatoid arthritis (RA). Data from Problem 1 of the Genetic Analysis Workshop 16 were used. These data consisted of 868 cases and 1,194 controls genotyped with the 500 k Illumina chip. First, machine learning methods were applied for preselecting SNPs. One hundred SNPs outside the HLA region and 1,500 SNPs in the HLA region were preselected using information-gain theory. The software weka was used to reduce colinearity and redundancy in the HLA region, resulting in a subset of 6 SNPs out of 1,500. In a second step, a parametric approach to account for interactions between SNPs in the HLA region, as well as HLA-nonHLA interactions was conducted using a Bayesian threshold least absolute shrinkage and selection operator (LASSO) model incorporating 2,560 covariates. This approach detected some main and interaction effects for SNPs in genes that have previously been associated with RA (e.g., rs2395175, rs660895, rs10484560, and rs2476601). Further, some other SNPs detected in this study may be considered in candidate gene studies.
机译:这项研究的目的是检测与类风湿性关节炎(RA)相关的相关单核苷酸多态性(SNP)之间的相互作用。使用了来自基因分析研讨会16问题1的数据。这些数据包括868例病例和1,194例以500 k Illumina芯片进行基因分型。首先,将机器学习方法应用于预选SNP。使用信息增益理论预选了HLA区域外的100个SNP和HLA区域的1,500个SNP。我们使用了weka软件来减少HLA区域的共线性和冗余,从而导致1,500个中的6个SNP的子集。在第二步中,使用贝叶斯阈值最小绝对收缩和选择算子(LASSO)模型并入了2,560个协变量,采用参数化方法解决了HLA区域中SNP之间的相互作用以及HLA-nonHLA相互作用。该方法检测了先前与RA相关的基因(例如rs2395175,rs660895,rs10484560和rs2476601)中SNP的一些主要作用和相互作用。此外,在这项研究中检测到的其他一些SNP也可以在候选基因研究中考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号